Statistical Machine Learning is used to discover patterns and relationships in large data sets. Topics will include: data exploration, classification and regression tress, random forests, clustering and association rules. Building predictive models focusing on model selection, model comparison and performance evaluation. Emphasis will be on concepts, methods and data analysis; and students are expected to complete a significant class project, individual or team based, using real-world data.

Prerequisites: PSTAT 120A-B and PSTAT 126 with a minimum grade of C or better.

4

Units

Optional

Grading

1, 2

Passtime

None

Level Limit

Letters and science

College
Unlocks PSTAT 134 PSTAT 135 PSTAT 234 PSTAT 235
These majors only finms actsc stsds stsap stats
T B A
No info found
See All
Winter 2024 . Coburn K M
ILP 1101
T R
14:00 PM - 15:15 PM
Winter 2024 . Coburn K M
NH 1006
T R
17:00 PM - 18:15 PM
See All
PSTAT 131 Yu G Winter 2025 Total: 156
PSTAT 131 Baracaldo Lan Fall 2024 Total: 64
See All
PSTAT 131
72 / 80 Enrolled
Introduction to Statistical Machine Learning
Laura Baracaldo 1.8
T R
17:00 PM - 18:15 PM
58.3% A
PSTAT 126
80 / 100 Enrolled
Regression Analysis
Puja Pandey 4.3
T R
17:00 PM - 18:15 PM
42.3% A
PSTAT 127
96 / 125 Enrolled
Advanced Statistical Models
Wendy Meiring 2.8
T R
11:00 AM - 12:15 PM
36.2% A
PSTAT 127
77 / 100 Enrolled
Advanced Statistical Models
Wendy Meiring 2.8
T R
11:00 AM - 12:15 PM
36.2% A
PSTAT 130
124 / 125 Enrolled
SAS Base Programming
Julie Swenson 4.3
T
09:30 AM - 10:45 AM
35.8% A
PSTAT 130
25 / 25 Full
SAS Base Programming
T
12:00 PM - 12:50 PM
35.8% A
PSTAT 134
81 / 88 Enrolled
Statistical Data Science
Katie Coburn 3.3
T R
15:30 PM - 16:45 PM
55.5% A